
JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 1 10/8/96  11:49 PM

The Joint Simulation System Architecture Evaluation
WIM DA Comments - 9/8/96

1. INTRODUCTION...............................................................................................................2

1.1 BACKGROUND .....................................................................................................................2
1.2 EVALUATION CRITERIA OVERVIEW.........................................................................................4
1.3 ASSUMPTIONS......................................................................................................................4

2. DSSA SPECIFICATION EVALUATION CRITERIA............................................................6

2.1 FRONT MATTER CRITERIA .....................................................................................................6
2.1.1 Introductory Material....................................................................................................6
2.1.2 Reference Documents.....................................................................................................7
2.1.3 Usage of the Reference Architecture..................................................................................7
2.1.4 Domain Definition........................................................................................................7
2.1.5 DSSA Assumptions Criteria............................................................................................7

2.2 GENERAL CHARACTERISTICS OF THE DSSA...............................................................................7
2.2.1 Architecture Description Methodology Criteria..................................................................7
2.2.2 Usage of Standards.......................................................................................................8
2.2.3 Usage Policy................................................................................................................8
2.2.4 Architecture Paradigm...................................................................................................8
2.2.5 Domain Specific Considerations......................................................................................9

2.2.5.1 Attributes.......................................................................................................................................................................9
2.2.5.2 Development...............................................................................................................................................................14
2.2.5.3 Pre-Exercise.................................................................................................................................................................14
2.2.5.4 Execution.....................................................................................................................................................................16
2.2.5.5 Post-Exercise...............................................................................................................................................................19
2.2.5.6 JCMMS.........................................................................................................................................................................20

2.3 DOMAIN OBJECT MODEL EVALUATION CRITERIA ....................................................................21
2.3.1 Data Dictionary.........................................................................................................22
2.3.2 Static View...............................................................................................................22
2.3.3 Dynamic View...........................................................................................................22
2.3.4 Data Model View.......................................................................................................22
2.3.5 Domain Object Model (DOM) Characteristics..................................................................22

2.3.5.1 Inheritance...................................................................................................................................................................23
2.3.5.2 Encapsulation.............................................................................................................................................................23
2.3.5.3 Standards / Methodology........................................................................................................................................23
2.3.5.4 Data Flow......................................................................................................................................................................23
2.3.5.5 Cohesion......................................................................................................................................................................24
2.3.5.6 States & Modes...........................................................................................................................................................24
2.3.5.7 Control..........................................................................................................................................................................24
2.3.5.8 Features of Independence........................................................................................................................................25
2.3.5.9 Human Computer Interface (HCI)..........................................................................................................................25
2.3.5.10 Use Cases...................................................................................................................................................................25

2.4 TRACEABILITY ..................................................................................................................26
2.5 IMPLEMENTATION GUIDE ....................................................................................................26
2.6 ARCHITECTURE MODELING GUIDELINES ................................................................................26
2.7 VARIABILITY AND DECISION MATRIX ....................................................................................27
2.8 COMPLIANCE ....................................................................................................................27
2.9 RATIONALE ......................................................................................................................27
2.10 GLOSSARY ......................................................................................................................27

3. ARCHITECTURE MODEL...............................................................................................28



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 2 10/8/96  11:49 PM

1. Introduction

The work recorded here was done in support of the Joint Simulation System
(JSIMS)/Joint Program Office (JPO) Domain Engineering iteration 3 (DE3) Architecture
Evaluation effort.  The lead engineer for DE3 is Lieutenant Jim Stein (JSIM/JPO).  The
Architecture Evaluation effort began on Tuesday, August 13 and continues through
Monday, December 2, 1996.  It is the team’s purpose to establish meaningful criteria and
evaluate four candidate architectures.  The results of the evaluations as well as the criteria
will be used to guide the design of a single JSIMS Domain-Specific Software Architecture
(DSSA).  Team members include both industry and government personnel.  It is hoped
that the products of DE3 including the “lessons learned” will be of value to the DoD
modeling and simulation community as well as the JSIMS Integration and Development
(I&D) contractor.  The team members include:

Rob Wittman (MITRE/JSIMS JPO) Allen Stennett (NSWC-DAMNECK)
Joe Batman (SEI) Tom Coneeney (NSWC-DAMNECK)
Jim Forehand (Nations/JSIMS JPO) Becky McGregor (TRW)
Parisa Shafiee (Nations/JSIMS JPO) Randy Brasch (LMFS)
Larry Smith (NAWC-TSD) John Glaize/Steve Schwam (HTI)
Joe Rubel (NAWC-TSD) Mark Riecken (SAIC)
Tony Luches (PTI/Air&Space) MAJ John Bullington  Matt Maier (WIM)
Jim Wells (CACI) George Thompson (DIA)
Jeani Wainscott (CACI) Jim Wells (CACI)
CDR John Daly (DISA) Cindy Magill(WARSIM)
Capt Roland Gagnon (NRO) Al Irwin (SAIC/WARSIM)
Norm Stewart Maj Marty Almquist (USMC)
 

1.1 Background

Architecture, in the sense we will use here, is a design abstraction which captures
structural properties of a system. In a classical sense, an architecture is a model of a
system. This can be expanded to consider a number of perspectives or views which
emphasize certain aspects of the system over others. We rely heavily on the notion of
architecture as a model of the system.

There is no generally accepted level of abstraction associated with architecture. There is a
continuum of design detail from very high level, hence, highly abstract and generic to
fairly detailed and concrete. An appropriate level is chosen based on a judgment by the
designer as to  what issues in the system are of sufficient importance to provide system
wide mechanisms for, as well as programmatic concerns with how to control system
implementation and insure an acceptable level of system quality.



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 3 10/8/96  11:49 PM

The purpose of an architecture for JSIMS is to manage system complexity by providing
models of the system which afford developers intellectual control of the system and a
means to insure conceptual integrity of the design concepts over the life of the system.
The architecture’s specification shall serve as a set of building plans to control
implementation of the system.

Specifically, in the context of JSIMS, we mean an architecture as an abstract model of the
structure of a system and coordination mechanisms, which insure functional requirements
are met. But a model itself is of limited utility for developers. We include, therefore, as an
integral part of the architecture a specification for construction of the system including a
definition of the structural types out of which system components are built,
characterization of the coordination mechanisms used to manage the interactions between
system components, and an assignment of responsibilities to components. A subset of
instances of certain structural types provide system wide functional services. These, in
combination with the coordination mechanisms, constitute the system’s infrastructure.

We will provide below a complete definition of a Domain Specific Software Architecture
(DSSA) specification which provides requirements for the information which is necessary
to fully define the system architecture. A domain specific architecture is simply an
architecture which captures the patterns of structure and coordination which are peculiar
to a particular application domain. In a sense, any architecture which is detailed enough to
provide a full specification for system construction is specific to the application domain
of that system. However, there is a specific set of artifacts which are implied by the
DSSA definition which we identify below. That definition for DSSA contents is for
JSIMS purposes and may not agree with the definition followed by other organizations
employing domain specific architectures.
 
 This document provides a set of criteria which four candidate architectures will be
compared against.  The resulting scores along with the criteria will be used as a guide in
designing a single JSIMS DSSA.  The four architecture candidates for this evaluation
consist of: the Hughes Training Inc. (HTI) DSSA and the Lockheed Martin Federal
Systems (LMFS DSSA), both developed as part of the Domain Engineering 2 iteration of
the JSIMS program, the National Air and Space Model (NASM) Notional Architecture,
and the Object Management Architecture (OMA) developed by the Object Management
Group (OMG).  
 
 In order to establish DSSA structure and content criteria, the team examined the four
candidate architectures with particular emphasis on the two existing DSSAs.  Quality
metrics were developed using current domain and software engineering literature.  Finally,
an initial set of driving requirements were extracted from the existing Domain Analysis
Technical Reports (DATR), NATSIM and WIM Developing Agent (DA)



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 4 10/8/96  11:49 PM

representatives, the NASM Notional Architecture Specification, and the JSIMS Maritime
System Technical Requirements Document (TRD).
 

1.2 Evaluation Criteria Overview

This document provides an initial definition of an ideal JSIMS DSSA.  Section 2 provides
the details of the paper specification with the exception of Section 2.2.5 Domain Specific
Issues and 2.3.5 DOM Characteristics.  Section 2.2.5 Domain Specific Issues includes the
driving requirements identified by the team.  They were put in this section for visibility
purposes only.  It is envisioned that this section will continue to evolve and in the final
DSSA will contain only those architecturally significant driving requirements as well as
domain specific issues such as time management, coordinate conversion, and HLA
interoperability.  Section 2.3.5 DOM Characteristics includes the criteria to used assess
the DOM. .  Section 3 starts to define criteria for an executable architecture.  A glossary is
also provided that defines the terms used throughout this document.  Each section and its
subsections has been given a percentage ranking according to its importance within the
DSSA.  Within each subsection there are a number of questions which will be used to
identify the quality and completeness of the architecture characteristic.  Most individual
answers will be scored using 3 points as the highest rating, 2 points for an adequate
response, 1 point indicating an inadequate response, and 0 equating to no response.
Exceptions to this scoring are noted on a question by question basis.  The point of the
scoring system is to identify relative strengths and weaknesses of candidate
architectures so that strengths can be integrated into a single DSSA document and
weaknesses brought to attention so that they be addressed.  A narrative of specific
findings will accompany scores so that it is clear what aspects of the documentation were
attributable to each score.

1.3 Assumptions

 It is assumed that the driving requirements identified by the Architecture Evaluation
Team may change.  We are aware of other requirements activities such as the JWFC
sponsored Functional Requirements Description and the Blue/Green Team activity which
may supplant or extend the driving requirements listed within this document.  We will
continue to coordinate with these groups as appropriate.  
 
 We are also assuming that the four candidate architectures are at varying levels of detail.
Our main purpose is to identify the merits of each architecture and to select the
“best of the breed” or devise a plan to combine the best features of each
architecture.  We understand any shortcomings within the architectures, based upon our
criteria, may in fact be due to design tradeoffs.
 



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 5 10/8/96  11:49 PM

 It is further assumed that HLA will continue to mature and provide the tools to achieve
HLA compliance.  
 
 It should also be noted that the content specified within this document is intended to be
used as a starting point in defining a DSSA Data Item Description (DID).  The results of
this evaluation will provide further insight into the creation of this DID as well as help
define the contents of the DATR.  We expect to continually evolve the quality criteria by
asking questions such as:  What attributes must the DSSA possess to meet the objectives
of JSIMS?  What architectural features support these objectives?  Do the features
support the driving functional and performance characteristics of JSIMS?  What are the
“business case” considerations (i.e., what is the “return on investment “ of including
certain features)?   



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 6 10/8/96  11:49 PM

2. DSSA Specification Evaluation Criteria

Each of the following sections (2.2 through 3.) will be given a score for evaluation
purposes.  These subsections contain questions with a numerical value associated with the
answer.  Most questions are generally stated so that the answers can be given in the range
0 to 3 where:

0 indicates “not present”
1 indicates  “inadequate”
2 indicates “adequate”
3 indicates “complete”.

 
Other questions are basically “Yes/No” questions.  In those cases “Yes” is given a value
of 1 and “No” is given a value of 0.  In all cases, a value of 0 is given where there is not
enough information to determine whether the documented architecture addresses the
question.

It should be noted that a 0 rating for “not addressed” is not necessarily bad. It simply
means that either the specific issue is not addressed in the documented architecture, that
the issue may not be important in the domain of the architecture, or that the design process
has not progressed to the point of addressing that particular issue.

The point of this scoring system is to help us (DE3 Architecture Evaluation Team) identify
strengths and weakness of candidate architectures.  This approach will help us to both
evaluate the candidate architectures and in thinking through how we’re going to make the
final DSSA product.

2.1 Front Matter Criteria

This front matter  is introductory, explanatory, and background in nature.  It should
describe the general nature of the DSSA specification and contain the types of
information specified in this section.

2.1.1 Introductory Material

The purpose of the introduction is to articulate the purpose and scope of the DSSA,
overview of DSSA, role of DSSA in process.
1. Does the introduction specify who the intended users (developers, testers, etc.) of the

document are?  
2. Does the introduction state whether the document is a specification or a set of

guidelines?
3. Does the introductory material state who owns the specification and how it is

modified?



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 7 10/8/96  11:49 PM

2.1.2 Reference Documents

This section is a list of documents referenced in the DSSA.  This list must be complete
(i.e., including all referenced documents) and accurate (no unreferenced documents;
document identifications must be correct). The references should include reference(s) to
the process that was used for development of DATR/DSSA.

2.1.3 Usage of the Reference Architecture

This aspect of the DSSA should address all users of the architecture and identify how it is
intended to be used.
1. Does the architecture make clear what is a testable requirement (i.e., required for

compliance) and what is optional or suggested?
2. Does the architecture contain software reuse guidelines?
3. Does the architecture provide appropriate depth so as to assist in establishing an
implementation management structure, e.g., IPTs?

2.1.4 Domain Definition

The purpose of the domain definition is to articulate the boundaries and content of
systems developed in compliance with the DSSA.
1. Does the domain definition use concepts which allow for reuse in the development of

a set of systems within a product line versus a single one-time system?
2. Does the domain definition clearly articulate what is within the domain and what is

not?  
3. Does the domain definition identify major external domains for which interfaces must

be provided?
4. Does the domain definition address the potential users (e.g., software maintainers,

exercise developers, military staff) of systems within the domain?

2.1.5 DSSA Assumptions Criteria

The purpose of the assumptions section is to explicitly state significant assumptions that
may be critical in understanding the DSSA.
1. Does the DSSA contain a statement of assumptions?

2.2 General Characteristics of the DSSA

2.2.1 Architecture Description Methodology Criteria

The architecture should be described in a clear and consistent methodology.  An
architecture description can be “combinations of graphical notations of boxes for
components and lines for interconnections along with symbolic descriptions of data
types, capabilities, and constraints.” [from Tracz]

1. Is the methodology used explicitly identified?
2. Are modification and/or extensions clearly identified?



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 8 10/8/96  11:49 PM

2.2.2 Usage of Standards

 Where applicable, the usage of industry standards is considered to be a beneficial
architectural feature.  Answers to the following questions should indicate how the use of
standards contributes to portability, reusability, and maintainability of the systems
within the domain.

1. Does the architecture specify or recommend capabilities that would be required of
computer languages?

2. Does the architecture specify or recommend capabilities that would be required of
communications protocols?

3. Does the architecture specify or recommend capabilities that would be required of
Graphical User Interfaces (GUI)?

4. Does the architecture specify or recommend capabilities that would be required of
data representations?

5. Does the architecture specify standard operating system interface?
6. Does the architecture specify/provide standard interfaces for common devices and
common systems interfaces.

2.2.3 Usage Policy

The DSSA specification should be clear on how it is to be used, i.e., what is required for
compliance.  Some of the significant usage policy questions are:
1. Does the architecture articulate what are the testable requirements for compliance?
2. Does the architecture provide usage guidelines for  COTS and how it may be used in a

system compliant with the architecture?  (e.g., if the interface requirements are met,
COTS may be used).

3. Does the architecture provide appropriate depth to be used by program management
as an aid to establishing IPT structure?  cf. “The structure of the JSIMS tree of IPT’s
parallels the software object class structure defined in the Domain Specific Software
Architecture (DSSA).” [JSIMS PMP]

4. Does the architecture have an explicit reuse policy with respect to 1) systematic
reuse; 2) opportunistic reuse?

5. Are there any computer language restrictions with respect to re-use?

2.2.4 Architecture Paradigm

The architecture paradigm is an explicit statement of fundamental principles governing the
architecture and is also known as architecture style.  Examples of architecture styles
include:  transactional database, client/server (data-centered repository styles);
compound document, hypertext (data-sharing styles);  layered, virtual machine
(hierarchical styles).  An architecture is often built on certain implicit assumptions that
are frequently not visible by examination of the domain object model (DOM) alone.  The
DSSA specification should attempt to make as many of these general assumptions
explicit.  In some ways, this also amounts to defining what the expectations of the



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 9 10/8/96  11:49 PM

architecture are.  For example, how does the architecture treat the following issues: “gross
organization of the system, protocols for communication and data access, assignment of
functionality to design elements, and selection among design alternatives” [Characteristics
of Higher-Level Languages for Software Architecture, Shaw & Garlan, 1994].
1. Does the architecture contain a discussion concerning the paradigm or style used?

2.2.5 Domain Specific Considerations

Section 2.2.5 addresses the set of driving requirements identified by JSIMS Development
Agents (DAs).  These driving requirements have been arranged in “buckets” which relate
to where they apply in the operational phase of JSIMS.  Considerations which cut across
all phases of operation were placed in the Attributes section.  Considerations which impact
development, pre-exercise, execution, or post-exercise phases are documented in similar
fashion.  The last section, JCMMS, identifies driving requirements associated with models.
A number of driving requirements in the Execution Environment group are listed as
applying to a graphical user interface for technical controllers. This establishes the
requirement for the control functions which are implied by the enumeration of user
interface capabilities.  In general they are not elaborated further in any other location.
Each of the four candidate architectures will be queried with respect to these essential
domain specific characteristics and adjudged based on their presentation of ability to deal
with these considerations.  The architectures must support all of these driving
requirements.  The single, final DSSA will address each of these considerations.

2.2.5.1 Attributes

Interoperability
1. HLA compliance  
2. Use MRCI for C4I interfaces - Maybe this should be changed to say “MRCI if

available” since it may not be available or be able to do all C4I interfaces and
WIM may need something else.  

3. Common tools to specify Interface Data  
4. Shared data conversion and reformatting routines  
5. File management   
6. Database management   
7. Data interchange services   
8. Communications services   
9. Data encapsulation and well defined interfaces   
10. Infrastructure based on well-formed layered construction   
11. Support real-time simulation for 50,000 entities @ 1-25 sites - WARSIM has the

requirement for 100,000 entities.  WIM, as a part of WARSIM also has this
requirement.  However, WIM must also replace TACSIM which currently can
support as many as 700,000 entities deaggregated.  In addition, NWARS (which
NATSIM is replacing) also can do up to 300,000 entities.  Since you are just
checking if the architectures will prevent more than 50,000 entities at once, you
may want to bump up this number to see if they COULD support more than



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 10 10/8/96  11:49 PM

50,000.  I would expect that by 2003, we would be able to do at least 500,000.
Everyone may not agree with me, but if the architecture isn’t expandable to ANY
number of entities, we did not do our jobs right and JSIMS is definitely not a
reusable system.   

12. Support the inclusion of engineering models   
13. Time management with respect to simulation and real world systems   
14. USMTF, TADIL, other real world formats  Does “other real world formats”

include Intelligence BOS specific formats like VMF, OTH-Gold, B2C2, etc.? Also, I
would assume report formats are more than just message text formats (i.e. Moving
Target Indicator (MTI), NITF Imagery, Synthetic Aperature Radar (SAR),
PAL/NTSC video streams,  SINCGARS data streams, etc.)

15. C4I messages shall be translated into CCSIL and other formats appropriate for use
with RTI   

16. Repeatability  
17. Avoid fidelity mismatch  
18. The design shall describe the behavior of the system, describing the constraints on

sequence and timing.   
19. The system shall be completely defined by the following specifications: Interface,

Connectivity, Behavioral, and Operational.   
20. The system shall account for required services to handle external dependencies.   
21. The system shall account for TAFIM services. - If you end up grouping

requirements, this one is similar to #29 and #48.   
22. The system shall require all data and control entering or leaving a component to do

so via its published interfaces.   
23. Each provided service shall be described by its parameters (name, type),

exceptions (name, condition), and performance limits (frequency, response)   
24. Each required service shall be described by its parameters (name, type),

exceptions (name, condition), and performance limits (frequency, response)   
25. The system shall describe connectivity to map provided to required services via

their interfaces.   
26. The system shall describe behavior for each component including timing and

sequencing constraints and protocols.   
27. The DSSA shall specify the interface specification for each component (provided

& required services).   
28. The DSSA shall describe the behavioral protocols for each component, including

timing and sequencing constraints.   
29. The DSSA shall list operational constraints for each component (TAFIM

standards, leak free").   
30. The Architecture Paradigm shall provide a blueprint for system construction,

including specification of interfaces and adherence to standards   
31. The Architecture Paradigm shall provide an interchangeable implementation,

including enhanced Reuse and built-in interoperability   



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 11 10/8/96  11:49 PM

32. The Architecture Paradigm shall provide resource predictability covering
allocation of hardware to software   

33. The system shall provide connectivity to C4I systems.   
34. The system shall provide message translation.   
35. The system shall provide internal (within BSS) routing.   
36. The system shall provide single point of interface for tactical C4I equipment. -

Instead of saying a “single point” interface, you may want to say a “single type”
interface, because although the sims may use MRCI or something similar, it does
not mean that we would not use several MRCI connections (all the same) to the
real world C4I systems in order to get the necessary bandwidth.   

37. The system shall provide isolation of cognitive" modeling.   
38. The system shall provide isolation of physical" modeling. - How about isolation of

“perceived truth” from the “ground truth” in the simulation.  This is a WARSIM
requirement.   

39. The system shall provide a common means of collecting exercise data   
40. The source database shall serve as a data repository.   
41. The source database shall serve as a single point of interaction between BSS

components and other GFI data.   
42. All members of the BSS domain will be potential members of a federated

simulation and need to be able to interoperate with other HLA compliant
simulations.   

43. All communications between major components of the system, and
communications between the system and external simulators, simulations and
instrumented vehicle shall be via emerging DIS standard protocols. (to allow for
DIS to become HLA)   

44. Primary considerations for ALSP include Interoperability with Legacy Systems   
45. Primary considerations for ALSP include relationship between ALSP and the

HLA - Does this mean an ALSP to HLA interface? (not clear)  
46. Time synchronization shall be considered in federation exercises.   Any federation

exercise must have time synchronization across all the involved simulations.   
47. A BSS simulation shall be able to control the advance of time to meet the needs of

the federation. - This could go under 2.2.5.4, GUI Interface, 16.4 Time
Management Services   

48. The Domain Specific Software Architecture (DSSA) shall conform to the DoD
Technical Architecture for Information Management (TAFIM) Volume 2,
guidance for a layered open systems software architecture.

49. The system shall support the interoperation of WARSIM 2000 systems or systems
components and distributed computing resources to support multi-corps and theater
exercises with globally distributed training audiences. - This could go under
2.2.5.4, Scenario Scale.

50. The system shall provide a common means of collecting exercise data



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 12 10/8/96  11:49 PM

51. The WARSIM 2000 system shall provide a common interface to support the
interoperation of existing and future simulation models, such as the Enhanced
Naval Wargaming System (ENWGS) of the Navy, the Air Warfare Simulation
(AWSIM) and the National Air and Space Model (NASM) of the Air Force, and
the Marine Air Ground Task Force Tactical  Warfare System (MTWS).  This
wording comes word for word from the WARSIM SRD.  For JSIMS, though,  don’t
you really want to say “JSIMS models will support interoperation with existing and
future simulation models such as the JSIMS Federates and the current ALSP
confederation”?  This would not exlclude any of the JSIMS DAs from
interoperation with legacy systems (especially since #44 and #45 basically say we
can use an HLA interface to ALSP to do this) or eachother.

 
Distributed Computing  
1. Mechanism for distributed concurrent shared data  
2. Transparent built-in distribution of all interactions between entities  
3. Limited system platform dependencies
4. Flexible, user-friendly configurable to available hardware  
5. Means to predict and monitor performance of configuration  
6. Core infrastructure communications via uniform API   
7. Centralized management of up to 44 distributed simulations - Where does this

come from (NASM)? Who decided we definitely need only 44 distributed
simulations at once.  I am not sure I really understand this requirement.   

8. Support filtering techniques to reduce network traffic load   
9. Diagnostic control
10. The system shall provide mechanisms for consistency across processors.   
11. The system shall provide a single source of control for simulation management.   

Dynamic Reconfigurability and Control  
1. Communication reconfiguration (re-establish comm if link drops) - Does this mean

simulation communications or the real world systems connected to the simulation
or both?  This could be very hard for the architecture to support if it was more
than just sim commo.  

2. Interchangeable use of SAFORS and warfighters in the loop - I assume
“warfighters in the loop” include virtual as well as live sims - WARSIM
requirement.  

3. Network management/services   
4. The system shall provide a consolidated interface to hardware devices   

Modular Components   

Simulation shall be transparent to training audience
Do you want to put the use of real world C4I equipment as GUI for the simulation here?



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 13 10/8/96  11:49 PM

Synthetic battlefield from individual to corps-JTF up to 10 sides Terrain modeling
global to area   
^
|---- These two look like they are a part of 2.2.5.4, Scenario Scale.
v
Represent multiple sides (a minimum of 10)

Architecture developed using object oriented analysis, design and implementation.

Reuse  
1. Adaptability  

1.1. Scalability  
1.2. Flexibility  
1.3. Extensibility  

Aggregation/De-aggregation  
1. Simultaneously view an entity as both an aggregation and deaggregation of its

platforms  
2. At the aggregate level, provide for the central resolution of engagements.
3. Interactions among simulated entities will be resolved at a comparable entity level,

only requiring decomposition to the platform level as required.
4. Several derived requirements for the aggregation issue may be of importance (i.e.,

how/when aggregates are de-aggregated during the exercise, aggregate may be
partially de-aggregated, ...)

5. Dynamic agg/deagg during simulation/exercise runtime.
6. Aggregate views need to include more than just aggregatations of units (i.e. EM
Spectrum, Communications networks, Heat/IR, etc.)

User Interfaces   

Automation  
1. Tooling development process  runtime services  

Composable architecture from object repository   
1. The design shall incorporate modularity, defining a unit of architectural

decomposition.   
2. The design shall describe the interfaces, which defines module features available

for public use, including provided and required services.   
3. The design shall describe connectivity, defining the mechanisms by which modules

exchange information and control.   
4. The system shall compile, link, and run correctly in the environment defined by

the operational specification.   
5. Each component's implementation shall consider Enumeration   



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 14 10/8/96  11:49 PM

6. Each component's implementation shall consider Interoperability   
7. Each component's implementation shall consider Scalability   
8. Each component's implementation shall consider Fidelity   
9. Each component's implementation shall consider Implementation & Deployment   

Security
1. Operation at multiple security levels
2. Security management/services
3. Security Audit Trail prescribed in DDS-2600-5502-87
4. Interface to classified databases
5. Interface to TACSIM and TEXIS - via HLA to ALSP interface?  See my legacy

system comment  in 2.2.5.1, Interoperability, #51.  There is NO direct I/F
requirement for JSIMS to these two systems.

6. Developed under Multiple Security Level environment - take out the
capitalization here - Yes, we want the arch. to support multiple security levels
(requirement), but not MLS (which is a design).

Configuration Management
1. Object-based
2. VV&A Status
3. Multiple models of real world entities
 
Validation, Verification and Accreditation
1. Common repository for all simulation information (i.e. model data, models,

scenario laydown, exercise results, report formats, ...)  A central repository where
users may start looking for reuse components.

2.2.5.2 Development

Standard software object template
1. Standard software object model to allow for plug and play and re-usability among

model components.  - This could go under 2.2.5.1, Modular Components.
2. Standard APIs to architecture services to allow for upward compatibility and

interoperability.

Object manager browser
1. Tool to allow model developers that ability to browse existing components that

may be used in within the new model effort.  This tool will allow the model
developer to browse existing objects using specified key words to define the
search criteria.

2.2.5.3 Pre-Exercise

Use modeling and simulation as primary decision support tool



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 15 10/8/96  11:49 PM

Support integration of Joint/Service doctrine development

Distributed collaborative planning and scenario generation

Standard DoD Data sources

Use of Verified and Validated data from authoritative sources

Scenario Generation
1. The system shall provide a means of creating and modifying scenarios.
2. The system shall provide an automated means of building unit organizations and

the Table of Organization and Equipment (TO&E) for units.
3. Distributed collaborative planning and scenario generation
4. Scenario Generation within 2 hours
5. Preview scenario based on time
6. Preview scenario based on time, event, entities, and scenario notes, and modify the

exercise accordingly
7. Select data to be logged during exercise
8. Intelligent laydown of forces (i.e. don't allow a tank to be positioned in the middle

of a lake)
9. Configuration of synthetic environments (i.e. air, space, sea, terrain, weather,

electromagnetic, ...)
10. Track modifications to the exercise scenario
11. Consistency and validation checking
12. Aggregate player laydown data (i.e. where (location) the components of an

aggregate will be placed, what machines they will reside on).
13. Track modifications to the exercise scenario and produce an audit trail, including

identification and management of exercise components
14. Consistency and validation checking and to modify the exercise accordingly
15. Aggregate player laydown data (i.e. where (location) the components of an

aggregate will be placed, what machines they will reside on). This concept also
applies to individual components that may be aggregated together during the
course of an exercise

16. Users shall create, modify, copy, merge, store and catalog (partial or completed)
scenarios over distributed sites as well as retrieve stored scenarios

17. Automate scenario generation to the maximum extent feasible including:
18. Automating the process of obtaining data from external real world C4I systems.
19. As well as other sources of scenario data (i.e. DIA Multi-Spectral Force

Deployment (MSFD) data and DoD mapping data)
20. Operate stand alone simulation or integrated into/(interoperate with) other

simulations (i.e. JSIMS)
21. NASM shall be capable of taking advantage of the services and other components

of JSIMS, including non-USAF developed objects and representations when



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 16 10/8/96  11:49 PM

executing stand alone or in a federation - although this comes word for word from
the NASM TRD, I would think that this is a requirement of ALL of the JSIMS DAs.
It definitely is for both WARSIM and WIM.  And I don’t think it just applies to
“non-USAF” objects, either.

22. Tools to support stress testing of the physical exercise configuration for load and
performance criteria without executing the actual exercise

23. Tools to support/assist the distribution of scenario components across networks.

2.2.5.4 Execution

Training in all phases of military operations

Scenario scale
I have a question about both Scenario Scale and GUI Interface paras. being here: Yes,
these are all good requirements, but aren’t they more than just “Execution”
requirements?  (Maybe put under 2.2.5.1 “Attributes”).

1. Capability to train from battle group to sensor operators
2. Training from wing-level to include JFACC Commander
3. Exercise any size total MAGTF from anywhere through seamless integration of

live, virtual, and constructive simulations - #1, #2, and #3 all seem to say the same
thing, just for “land”, “air”, and “sea”, respectively.  I would think you would
want a more generalized requirement here to say the simulation shall support all
training levels for all service components.  That way, you would not miss any
architecture constraints.

4. Support operational training and readiness as well as educational communities
5. Provide for trainees to be trained where they fight

GUI Interface for technical controllers - This could also go under 2.2.5.1 Attributes in
the User Interfaces section.
1. Specify and adjust physical system configuration
2. Initiate and load scenario and parameter
3. Start, pause, resume, checkpoint, reset, restart, terminate (state control)
4. View any and all characteristics of any entity
5. Monitor trainee actions
6. Set simulation time and time scale faster/slower than real time
7. Jump ahead in time
8. Interject events, ability to change values of various parameters under manual

control
9. Change status of entities (combat capabilities)
10. Specify data to be recorded for hot wash / AAR
11. Resolve differences between spatial coordinate systems
12. Support acquisition equipment design and prototype development and test and

evaluation



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 17 10/8/96  11:49 PM

13. Time management services
14. The system shall provide display services for controllers and other BSS

components. - via real world C4I GUIs?  Again, the requirement for both
WARSIM and WIM is not to have simulation terminals that the roleplayers or
training audience must use.  They will use their own real world C4I equipment.

15. The system shall allow isolation of display technology.
16. Time management services

16.1. . Jump to specific time or event,
16.2. Set simulation time and time scale faster/slower than real time,
16.3. Jump backwards in time to support simulation restart (from a checkpoint)

or simulation replay
16.4. Simulation time capabilities:

16.4.1. Run at rate Slower than real time (SRT), to near real time (NRT)
and faster than real time (FRT)

16.4.2. Include event driven synchronous, event driven asynchronous,
scaled time driven

16.4.3. Time compression factors shall be selectable within a range from
1/10th to 100 times real-time

16.4.4. execute at the wargame simulation speed to the logical time selected
by the technical controllers, including discontinuous time
changes(e. g. jump to a step specific time or event)

16.4.5. What about time lag between the simulation and real time in event
driven?  Do we have some “time management” (here) requirement
to keep the simulation transparent to the training audience?

17. Provide continuous review capabilities and traceability to training and exercise
objectives(graphical and textual means)

18. Support the placement/laydown of aggregated entities and how the aggregated
entity will be dispersed across a network during the simulation execution if the
aggregated component should be de-aggregated.  The reverse is also true concerning
individual components that could be combined to form an aggregated component
during the simulation.

19. Accept and respond appropriately to user input with appropriate range and error
checking from technical controllers and user inputs.

Process control services
1. Resource management
2. Schedule resources
3. Schedule communication services
4. System configuration control
5. Simulation analysis capability including collection of data (statistics) on model

events, message traffic, queues, etc.
6. Event management and logging
7. Adjust event outcomes as necessary



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 18 10/8/96  11:49 PM

8. Provide the capability for the controller to change the sides of an entity in the
simulation

9. Ability to record selected events
10. Specify additional data to be recorded
11. Select and/or define reports to be produced (continuous review (CR), real-time

reports and post-exercise reports)
12. The system shall provide a single source of control for simulation management.
13. Automatically store all selected data without degrading exercise execution

performance
14. Interface with external simulation systems and/or real world C4I interfaces as

specified in the simulation configuration
15. Ability to manage aggregated entities within the simulation, including dynamic

aggregation and deaggregation, multiple levels of  resolution, behavior
representations of individual entities and aggregated entities (behavior is distinct
not just the sum of the individual entities)

16. Support entities which have multiple levels of resolution
17. Interactions among simulated entities shall be resolved at comparable levels of

resolution
18. Maintain Ground Truth and entity based perceived truth
19. Run Time Performance

19.1. Capability of executing faster than real time (at least 2:1) while supporting
a multiple Major Regional contingency (MRC) scenario with maximum
level of resolution and full participation of training audiences down to the
wing level

19.2. With SAFORs, performance should allow for a multi-MRC scenario to
execute at a speed of 10:1

19.3. With CGFs and only high level inputs scenarios will execute at a speed of
100:1 (12 days in about 3 hours) - What is the difference between SAFOR
and CGF?  I thought they were the same thing.

19.4. Extensible to support objective speeds for analytical and minimum detail
educational purposes which execute at a speed of 1000:1

 
20. Simulation Re-execution shall be repeatable and causality conformant  with

previous execution if all conditions (e.g. communication links, timing issues, etc.)
to the previous execution is identical

21. Capability to combine and switch between WITL and SAFORs during simulation
execution

22. Support ground truth and entity based perceived truth
23. To the maximum extent feasible (NASM) use/adopt the HLA RTI adopted by

JSIMs or develop an HLA RTI to provide interoperability with other simulation
systems and real world C4I systems.

Capability to train onboard ship using organic equipment



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 19 10/8/96  11:49 PM

- Make sure the AET understands that this requirement means NO simulation equipment
at all in the field (nothing on USN ships, in USA TOCs, in USAF aircraft, etc.).  They want
to use their real world C4I equipment to get input from and tasking to the simulation.

Conduct mission preview and rehearsal on land or at sea at all levels from
individual marine to MEF within 48 hours

Execute joint exercise to train JTF; JTF staff, services staffs subunit and
subordinate staffs (expands scope of defined domain) - Does the EAC requirement in
WARSIM go higher than JTF?

1. The system shall include battle simulation models that portray the joint and
combined environment needed to support Army training events.

The system shall provide unified and consistent source of information about both
ground truth”” and the effects of the environment.

The system shall provide delineation between ground truth and perceived truth.

The system shall share information among collocated units.

Reliability:  the system shall be able to restart an exercise from the point of
failure not more than one hour after the correction of the system failure.

2.2.5.5 Post-Exercise

Detailed Analysis

Assess the effectiveness of the exercise, provide realistic training and conduct post
exercise analysis

After action reviews shall be available for hot wash within two hours of the end of
an exercise

Playback
1. NATSIM unique replay
2. NASM replay. - Don’t ALL the DAs have this replay/playback requirement? -
WIM and WARSIM do, too.  You need a more general requirement.
3. Provide the ability to playback the simulation from a selected user view.

Capability for post-exercise analysis at any location - by “any location”, do you
mean even non-simulation sites?

Generate reports



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 20 10/8/96  11:49 PM

1. Report Generation
2. Standard report generation
3. Non-Standard report generation
4. User definable report formats
5. Reuse reports
6. Produce statistical graphs, three dimensional displays, charts, etc.

Generate reports and report formats
1. Predefined set of report formats
2. Predefined report generation automatically completed at the end of an exercise as

appropriate
3. User-defined  report generation
4. User definable report formats (can be created during simulation execution and post

exercise activities)
5. Reuse reports and report formats

AAR
1. The system shall provide the ability to review and analyze events as they

occurred in the simulation.
2. Support AAR within 1 hour after exercise
3. Track special or high interest information
4. Provide the ability for automatic detection of events based upon common errors
5. Compare ground truth information from the simulation databases with other data
6. Compare ground truth information from the simulation databases with the end

users perceived truth data
7. Automatic temporary storage of ALL simulation information and parameters with
“save for AAR” capability.  For example, this would allow for continuous video streams
from a virtual UAV, with the capability for the AAR Analysts to just turn on or off the AAR
video save feature when an important target is passed over during the exercise.

Data Correlation

2.2.5.6 JCMMS

Model multi-sided air/space, ground and naval combat with logistical and Intel
support
1. Air Combat
2. Ground Combat
3. Naval Combat
4. Logistical Support - Combat Service Support?
5. Intelligence Support
6. Medical
7. Engineering - It looks like you are covering all 7 BOS’s here.  What about

Command & Control, Maneuver, Fire Support, and Air Defense?



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 21 10/8/96  11:49 PM

8. Transportation
9. Communications
10. Geophysical
11. Meteorological
12. Oceanographic
13. Environmental
14. Space
15. Electronic warfare
16. MOOTW
17. Information Warfare - EW (#15) and IW (#17) does not include Intelligence,

Surveillance and Reconnaissance (ISR), which is also a requirement for WIM.
18. Realistically model all theater level collection sensors and national assets

2.3 Domain Object Model Evaluation Criteria

“In utilizing the Domain-Specific Software Architecture as the backbone of the project,
JSIMS implicitly enforces the concept of reuse across the entire program.  The intent is
for the architecture to have multiple specification tiers to capture systematic reuse within
JSIMS.” [JSIMS PMP]

The Domain Object Model (DOM) used for JSIMS is an integral part of the architecture
specification. Our perspective here focuses on an object view of the domain. The
architecture defined for JSIMS and illustrated by the DOM provides an object based
framework for system construction. The classes which are identified in the DOM
represent key abstractions of structural types whose behaviors satisfy functional
requirements for the system. They embody a mapping to real world entities which
captures relevant details necessary to simulate the capabilities expressed by those
entities.

The DOM should be viewed as a purposeful and organized collection of classes which
capture patterns of structure identified from the domain. These classes encapsulate details
of algorithms which express behaviors characteristic of the abstractions represented by
the classes. Classes in the DOM coordinate their activities in a manner which reflects
patterns of interaction which real world entities engage in. They are organized in
hierarchies which both capture the structuring of the real world domain and segment the
system behavior into understandable and manageable chunks.

The purpose of the Domain Object Model (DOM) is to describe the static, functional,
and dynamic structures of the architecture, to illustrate the partitioning of the domain into
its major components (or “categories” of software), and to define relationships between
these components.  It should be noted that other “views” (e.g., a layer view) may be
useful in describing a particular architecture.  The DOM also contains a data dictionary
and a set of DOM characteristics.



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 22 10/8/96  11:49 PM

2.3.1 Data Dictionary

The data dictionary describes the data and attributes associated with each component.
The data associated with a component (e.g., class) is documented with each component.

2.3.2 Static View

The static view of the architecture illustrates the partitioning of the domain into its major
components (or “categories” of software), and defines relationships between these
components.   

2.3.3 Dynamic View

The dynamic view describes the behaviors of the system, i.e., how the various
components of the architecture interact to satisfy the needs of the JSIMS users.  Example
content includes: Use Cases, Event Traces, Control Flow, State Transition Diagrams, and
Temporal Relationships between various components.

2.3.4 Data Model View

The data model view describes the data flow of the system  at an appropriate level to
illustrate the data dependencies between the various components (e.g., object classes) of
the system.   Shows major data paths between and among transformation processes as
well as to/from data storage.  Contains information such as Data Flow Diagrams.

2.3.5 Domain Object Model (DOM) Characteristics

The assessment of the DOM architecture is based upon various software quality goals.
These are commonly referred to and grouped into such headings as maintainability,
reliability, understandability, efficiency or reuse.  There are both internal and external
aspects to these qualities.  Specific software engineering principles are applied in a
disciplined manner to achieve the many goals desired of the architecture.  The object
model is a starting point since it encompasses such principles as abstraction,
encapsulation, hierarchy(inheritance) and modularity.  These principles help to manage
the complexity of the DOM and increase its overall internal and external quality.
Answers to the questions below are interpreted from these perspectives which tend to
emphasize different aspects of each issue.

To answer the questions below three architectural aspects will be investigated.  First, the
DSSA documentation will be read.  Second, (when available) the Object Model will be
studied.  Third (when needed),  experts will be called or brought in to provide further
information on the particular architecture.  The answers given to the questions will not be
just straight yes/no answers.  Explanations for the yes/no will also be provided.  These
explanations will take into account the documentation provided, what was found in the
Object Model, and what was learned from the experts.



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 23 10/8/96  11:49 PM

2.3.5.1 Inheritance

1. Are the hierarchies deep or shallow? (no depth = 0, depth to 2 levels =1, 3-5=3, 6-
8=1)

2. Are the inheritance lattices easily understood?
3. Is inheritance used for information hiding?
4. Does the architecture identify what is being hidden? - Encapsulation?
5. Is overloading used appropriately to maintain original intent?
6. Are client dependencies based only on interfaces?

2.3.5.2 Encapsulation

1. Complexity of system? (low to high with low = 3, and high=0)
2. Average complexity of key abstractions? (low to high with low = 3, and high = 0))
3. Are these static relationships used appropriately? (Inheritance, Aggregation, Using,

and Association)
4. Does the DOM make use of encapsulation?
5. Does the DOM make use of class libraries?
6. Is the initial view of the architecture at the perceived highest level of abstraction for

the domain?
7. Is there consistency between the static diagrams and the diagrams expressing the

dynamic behaviors?
8. Do the abstractions map to the problem space?
9. If not all of the problem space is represented in the key abstractions, then please list

what is missing.
10. Are there key abstractions that represent external elements that must interact with

your system?
11. Are the external interfaces consolidated/minimized?
12. Does the architecture support design centered around the manipulation of abstract

interfaces rather than objects?

2.3.5.3 Standards / Methodology

1. Are the standards used explicitly identified?
2. Are the standards applied uniformly?  
3. Is there an explicit identification of methodology (e.g., Unified Method)?
4. Are exceptions and extensions to the methodology identified?
5. Are links and messages used appropriately in the diagrams expressing the dynamic

behaviors?
6. Are assumptions explicitly identified?
7. Does the architecture identify optional or alternative implementations?

2.3.5.4 Data Flow

1. Is there a strategy for limiting data flow between components?
2. Are data buffering requirements described and specified?



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 24 10/8/96  11:49 PM

3. Does the architecture describe the architectural mechanisms that allow the
components of the system to communicate?  (describe the flow of data to support
major uses of the system, data flow across the distributed system, data storage, and
coordination of data throughout the system)

4. Are the databases encapsulated (as opposed to distributed across classes or publicly
accessible)?

5. Is the data described in the data flows consistent with the DOM Data Dictionary?

2.3.5.5 Cohesion

1. What is the cohesion of the object?   (cohesion range: object high= 3, least=0)
2. Does the architectural features support isolation of changes?  Some examples of such

features: a layered architecture to isolate the change to a particular layer; standard
interfaces (APIs, EEIs) between layers to prevent changes from “spilling over” into
other layers; interface to hardware elements (databases, networks, etc.) isolated to
particular components so that hardware can be changed without widespread effects.

3. To understand a class, do many details of the other classes need to be investigated?
(Yes = 0, No = 3)

4. Is class implementation based on the interface such that another implementation can
be easily substituted?

5. Are all essential behaviors accounted for in each class? if not,  please list what is
missing.

6. Are the scalability limits appropriate for the component?

2.3.5.6 States & Modes

1. Does the architecture describe the major states and modes?
2. Does the architecture describe the conditions that cause the transition between states

and modes?

2.3.5.7 Control

1. Does the architecture describe mechanisms for supporting critical timing events?
2. Are interrupts described and specified?
3. Are throughput demands described and specified?
4. Does the architecture indicate whether or not protocols are used (for example, inter-

object message formats)?
5. Does the architecture describe the mechanism for controlling the flow of events or

activity?  
6. Does the architecture provide object brokering?
7. Does the architecture describe a synchronization mechanism for the system (for

example, is time synchronization discussed)? - Can there be multiple synchronization
mechanisms?

8. For distributed systems, does the architecture describe a mechanism for consistent
and synchronized control flow across all elements of a distributed system?

9. Does the architecture identify rules or process by which a system can be composed?



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 25 10/8/96  11:49 PM

10. Does the architecture support the distribution of objects across a heterogeneous
collection of computer systems? (does it included services such as; name, persistence,
synchronization, exception handling, security, binding, and dispatching)

11. Are there appropriate architectural mechanisms for managing initialization?
12. Does the architecture allow for dynamic reconfigurability (e.g., contain such features

as dynamic re-allocation of resources, dynamic variability of time management,
dynamic variability of model fidelity)?

2.3.5.8 Features of Independence

1. Is the architecture independent of the hardware platform?
2. Is the architecture independent of the Operating System?
3. Is the architecture independent of the software language(s)?
4. Is the architecture independent of the interprocess communications method?
5. Does the architecture specify standard interfaces between components (e.g., APIs,

EEIs) so that new and alternative components can be added efficiently?
6. Does the architecture identify rules for adding new components?
7. Does the architecture describe anticipated areas of change (requirements/maintenance)

?
8. Do anticipated areas of change indicate recommended practices for dealing with the

changes?
9. Does the architecture support polymorphism and dynamic binding?
10. Are all interoperability requirements addressed (example: does the architecture

provide interoperability with external simulations and with real-world equipment)?
11. Does the architecture have provisions and rules for including components from other

systems, such as legacy systems, and to take advantage of reuse (example:
specification of “wrappers”)? - I thought using “wrappers to include legacy software
was a no-no.

12. Is the system infrastructure distinctly separate from the applications?
13. Does the architecture provide a prescribed method for mapping software to hardware?  
14. If so, does that method provide a means for changing the mapping?
15. Can the mapping be changed during execution?
16. Does the architecture support the use of COTS and GOTS products?

2.3.5.9 Human Computer Interface (HCI)

1. Is HCI encapsulated (as opposed to distributed across classes or publicly accessible)?
2. Does the DOM include architectural components that provide each user(system user)

with the “appropriate” view of the system (i.e., the information presented to each
user matches that user’s needs, no more and no less)?

3. Is the presentation of information coordinated with the production of the information,
so that unnecessary information is not computed?

2.3.5.10 Use Cases

1. Do Use Cases capture the user intent?



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 26 10/8/96  11:49 PM

2. Complexity level (low to high) of use case scenarios. (low=3, high=0)
3. Does the architecture describe via use cases the “major system uses” of the system?
4. Does the architecture describe “Stress” cases (i.e., use cases which stress the expected

limits of the system). - Do “stress” cases include scenarios where you are testing
more than just one system limit simultaneously? (i.e. 25 distributed sites, 50,000
entities apiece, all running full video capture, linked with all real world C4I at the
same time; The architecture may pass any one test, but will it pass many at the same
time?)

5. Does it describe major execution sequences, where execution sequences may be
asynchronous or parallel?

2.4 Traceability

Traceability means that the architecture components must cover all JSIMS requirements
and conversely, any component must be in response to one or more requirements
(applicability).
1. Are all driving requirements visibly (i.e., by reasonable inspection) mapped to

architecture components?
2. Is the means of traceability stated (i.e., who maintains it, what database does it
reference, etc.)?

2.5 Implementation Guide

Provides guidelines on how to build (an instance of) the architecture.  Describes how to
tailor and “instantiate” the various components of the architecture to address particular
system (within the domain) needs.
1. Are there any computer language constraints identified?
2. Are hardware constraints identified?
3. Are guidelines provided for distributed system implementation (as appropriate)?
4. Are architecture templates and/or tools provided for?
5. Does the implementation guide indicate how changes to the architecture take place
(e.g., could be a pointer to the Domain Engineering Master Plan).

2.6 Architecture Modeling Guidelines

Describes how the architecture can be modeled and/or prototyped to investigate
performance requirements.
1. Does the DSSA identify which critical areas of the architecture modeling and/or

prototyping are needed?  Critical areas may be based upon business case objectives,
driving requirements, perceived technical dependencies and/or difficulties.

2. Are the modeling guidelines specific enough to ensure an accurate representation of
the architecture?

3. Do the architecture modeling guidelines address performance analysis and protocol
and interface validation?



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 27 10/8/96  11:49 PM

2.7 Variability and Decision Matrix

This attribute of a DSSA identifies major variable features of the architecture and
provides guidance to system implementors on how to make choices within this
variability.
1. Are features of the domain architecture identified which are variable (either as

alternatives or as options)?
2. Are the consequences of this variability discussed?  
3. Is guidance provided to the developer as to how to implement variability?  What are

the trade-offs?
4. Has system variability been planned for in the architecture?  Some examples: system

parameters (things like fast-time rate, time step size, size of queues) are variable; the
architecture provides for multiple-fidelity/multi-resolution models and their
management and coordination; the architecture is designed to support multiple control
flow and data flow mechanisms.

5. Is discussion provided on what the variability means to the various users of systems
within the domain?

2.8 Compliance

The architecture must specify what system properties are required in order to achieve
status as a member of the domain.
1. Which features of the DSSA are required (i.e., part of a “specification”)?
2. How does an offeror (either a developer or a user with an existing system) determine

compliance?
3. What is ensured by compliance?
4. Does the compliance discussion make clear how legacy systems fit into the domain,

for example?
5. Does the architecture reference a management plan which addresses the process for
compliance testing?

2.9 Rationale

This portion of the architecture provides the rationale and reasoning behind the various
architectural features used.  This may be a separate section of the architecture
specification or may be an integral part of the entire document.
1. Completeness -- Does the rationale address all areas of the system?
2. Conciseness -- Is the rationale clear, succinct, and to-the-point, so as to aid in

understanding the architecture?

2.10 Glossary

The glossary provides the definition of the terminology used in the DSSA, as well as
abbreviations and acronyms.
1. Are potentially vague or ambiguous terms addressed?
2. Are all abbreviations and acronyms addressed?
3. Are synonyms provided and cross-referenced?



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 28 10/8/96  11:49 PM

3. Architecture Model

An integral part of an architecture is a working model of the architecture itself.  This
version of the architecture is valuable in providing insights into the nature of design and
how the architecture can be implemented.  Such a model may be implemented in a
software engineering tool.  The architecture model may then be compilable and executable.
An architecture model must be clearly mappable to, and accurately represent, the
architecture specification.
1. Is an architecture executable (i.e., a model of the architecture) provided?
2. Are the hardware and software representations independently modifiable?
3. Is the level of abstraction used in the mode appropriate? (i.e., not too high a level nor

too detailed to be useful).
4. Are the modeling tools easily available (e.g., COTS, GOTS)?
5. Does the architecture executable accurately represent the architecture?



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 29 10/8/96  11:49 PM

Glossary

Abstraction - 1. Generalization, ignoring or hiding details. Examples are abstract data
types (the representation details are hidden), abstract syntax (the details of the
concrete syntax are ignored}, abstract interpretation (details are ignored to analyze
specific properties).   

2. <programming> Parameterization, making something a function of something
else. Examples are lambda abstractions (making a term into a function of some
variable), higher-order functions (parameters are functions), bracket abstraction
(making a term into a function of a variable).

Aggregate. An activity that combines individual entities into a singular entity. Contrast
with: deaggregate. [DIS]

Aggregation -  A composition technique for building a new object from one or more
existing objects that support some or all of the new object's required interfaces.

Architecture - A high level view of a system based upon an organized collection of key
abstractions and whose implementations exhibit appropriate behaviors.

Association - A reference to an object.

Attribute -  Characteristic of an object.

Behavior - Action performed by an object.

Class - The prototype for an object in an object-oriented language; analogous to a derived
type in a procedural language.

Composability - This property deals with the ability of a system or architecture to
support the construction of a set of cooperating models. Composability exists at
two or, possibly more, levels. An architecture may support composition of a
single simulation, that is, a set of models and an infrastructure which operate on a
single machine or closely coupled, collocated group of machines which appears to
remote simulations as a single device.

Composition - The process of constructing a system for a specific application from
reusable components.

Cohesion -The extent to which the activities within a class are related.

Correctness - the extent to which software is free from design and coding defects, meets
its specified requirements, and meets user expectations.



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 30 10/8/96  11:49 PM

Coupling - The degree to which components depend on one another. There are two
types of coupling, "tight" and "loose." Loose coupling is desirable for good
software engineering but tight coupling may be necessary for maximum
performance.  Coupling is increased when the data exchanged between
components becomes larger or more complex.

Deaggregate.  - An activity which decomposes an aggregate entity into multiple entities.
Contrast with: aggregate. [DIS]

Dynamic Binding - The property of object-oriented programming languages where the
code executed to perform a given operation is determined at run-time from the
class of the operand(s) (the receiver of the message). There may be several
different classes of objects which can receive a given message. An expression may
denote an object which may have more than one possible class and that class can
only be determined at run-time. New classes may be created that can receive a
particular message, without changing (or recompiling) the code which sends the
message. An class may be created that can receive any set of existing messages.

Dynamic Object Creation - Constructing an object, including its attributes and
methods, at run time.

Encapsulation - Sometimes called data hiding or information protection. This is the
degree to which class implementation details and design assumptions are hidden
from users of the class. It deals with internal data structures, control of execution
(algorithms), and the details (protocols, data representations, formats, etc.) of any
interfaces which are hidden within the class implementation. Issues related to well
formed interfaces, location transparency, route transparency, logical addressing,
etc. are part of encapsulation.

Event Trace - An expression of  the sequence of executions of architectural components
to accomplish a specific system task. (see Scenario, Use Case)

Expandability - the extent to which the software can be improved for performance or
other software attributes.

HCI - Human Computer Interface.

Hierarchy - An organization with few things, or one thing, at the top and with several
things below each other thing. An inverted tree structure. Examples in computing
include a directory hierarchy where each directory may contain files or other
directories; a hierarchical network, a class hierarchy in object-oriented
programming.



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 31 10/8/96  11:49 PM

Inheritance - In object-oriented programming, the ability to derive new classes from
existing classes. A derived class ("subclass") inherits the instance variables and
methods of the base class ("superclass"), and may add new instance variables and
methods. New methods may be defined with the same names as those in the base
class, in which case they override the original one.

Interoperability - The ability of two or more systems to exchange information and to
mutually use the information that has been exchanged. Interoperability is a
concern both in the small, with regard to interoperation of components of a
system, and in the large, with regard to the meaningful interaction of sets of
systems.

1.  Interoperability (boundary). This aspect of interoperability is concerned with
issues which are necessary to insure interoperability but not sufficient in
themselves. This addresses the agreements of syntax and semantics at interface
boundaries which allow different systems to exchange data. This is primarily an
extensive property which relates one system with another. Data standardization is
an expression of this property.

2.  Interoperability (deep issues). This aspect of interoperability deals with the
deeper issues on which some agreement must be reached before systems can
interact with each other in a meaningful way. Not only must they understand the
content of communications but the actions related to or triggered by the
communication content and the intended use of data must conform to a common
set of expectations. This is primarily a extensive property which relates one
system with another. Examples of issues within this venue include: correlation of
earth models, management of level of detail, resolution of attrition and kill
removal, computation of intervisibility, dynamic migration of models,
aggregation/deaggregation, database correlation, and resolution of fidelity
differences.

Maintainability - This system property addresses all aspects of changes to a system
including those to implement corrective actions, introduce enhancements, and add
new functionality.

1.  Modifiability. Sometimes called flexibility. This property refers to the
amenability of an architecture or system implementation being changed without
the introduction of additional functionality. This usually refers to modifications to
effect corrective action or to improve specific performance, e.g. optimization of
algorithms, optimization of space utilization, etc. This applies to changes made to
existing components or classes and involves modifications of data structures,
internal state data, algorithms, assumptions, and internal state transitions.



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 32 10/8/96  11:49 PM

2.  Extensibility. This property deals with the addition of new functionality or
capability to an existing system or architecture. Changes involve addition of new
functions to existing components, new classes, new infrastructure capabilities,
new interfaces, etc.

3.  Portability. The ability of a class, architecture, or system to be migrated to a
different execution platform. This can involve changes to the underlying hardware,
operating system, or service software which the system or class relies on. This is
related closely to encapsulation. It may also involve changes within the existing
execution platform to various resource allocation strategies, e.g. changes in the
way components are scheduled, changes in the way memory is allocated (or which
memory), changes to the communications services, etc.

Method - The name given in Smalltalk and other object-oriented languages to a procedure
or routine associated with one or more classes. An object of a certain class knows
how to perform actions, e.g. printing itself or creating a new instance of itself,
rather than the function (e.g. printing) knowing how to handle different types of
object.   

Different classes may define methods with the same name (i.e. methods may be
polymorphic). The term "method" is used both for a named operation, e.g.
"PRINT" and also for the code which a specific class provides to perform that
operation.

MMI -  Man-Machine Interface.

Modularity - This property refers to the partitioning of system functionality into highly 
cohesive but loosely coupled partitions which are distinct and well defined. 
Questions of how appropriate a partitioning is with respect to the application 
domain are also relevant.

Object - In object-oriented programming, a unique instance of a data structure defined
according to the template provided by its class. Each object has its own values for
the variables belonging to its class and can respond to the messages (methods)
defined by its class.

Polymorphism - means the ability to take several forms.  In object oriented systems, run
time polymorphism refers to the ability of an entity to refer at run time to
instances of various classes within its hierarchy.

            A concept first identified by Christopher Strachey (1967) and developed by
Hindley and Milner, allowing types such as list of anything. E.g. in Haskell:

           length :: [a] -> Int   



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 33 10/8/96  11:49 PM

is a function which operates on a list of objects of any type. This is known as
parametric polymorphism. Polymorphic typing allows strong type checking as
well as generic functions. ML in 1976 was the first language with polymorphic
typing.   Ad-hoc polymorphism (better described as overloading) is the ability to
use the same syntax for objects of different types, e.g. "+" for addition of reals
and integers or "-" for unary negation or diadic subtraction. Parametric
polymorphism allows the same object code for a function to handle arguments of
many types but overloading only reuses syntax and requires different code to
handle different types.

In object-oriented programming, the term is used to describe variables which may
refer at run-time to objects of different classes.

Reliability - The ability of a program to perform a required function under stated
conditions for a stated period of time.

Reusability - The extent to which a module can be used in multiple applications.

Scalability - Scalability has an important impact on the long term viability of a system
and relates to the consequences on system properties as the size of operation
varies. It is evident for an implementation as the size of the running system varies
with demand and for a system design as extensions are added.

1.  Scalability (in size). This aspect of scalability relates to the variation in the
number of countable elements within a system or architecture. That is, how many
of the various pieces can be instantiated. It applies to the number of instances of
classes, messages, etc. as well as variation in certain attribute ceilings like sizes of
lists or data structures. Increases in limits may require upgrades to execution
platforms. It deals primarily with variation in the number of instances of existing
things rather than the number of classes of things. Variation may also be in the
sense of resource loading such as number of events per unit time or number of
transactions per unit time. Variation in underlying resources such as numbers of
machines, numbers of nodes, etc. also applies to this sense of the attribute.

2.  Scalability (in type). This aspect of scalability deals with variation in the
number of types of system capabilities including number of classes, attributes,
methods, schema, type representations, event types, message types, etc. This
quality is closely related to extensibility. It also deals with variation which is
beyond simply adding additional functionality or capability and may reflect
changes which alter scope without altering capability as well as the case where
scope changes coincide with capability changes.

Scenario - An expression of  the sequence of executions of architectural components to
accomplish a specific system task. (see Use Case, Event Trace)



JSIMS DE 3 DRAFT DSSA Evaluation Criteria

COMB_06.DOC 34 10/8/96  11:49 PM

Uniformity - This refers to using a consistent approach across the architecture. Similar
problems are solved by the same solutions and interfaces are consistently treated
across all components. Application of  a system control strategy consistently
throughout the architecture and use of the same set of communications
mechanisms across the system are examples.

Usability  - This is a measure of the utility of the system or contribution to utility of the
system by the architecture as viewed by the user. This includes assurance that all
functional requirements are allocated to system partitions, that a traceability
mechanism is provided to allow verification, and that important non-functional
qualities are satisfied (such as intuitive user interfaces with desirable look and
feel).  It also addresses the initial effort to learn, and the recurring effort to use, the
functionality of the software.

Use Case - An expression of  the sequence of executions of architectural components to
accomplish a specific system task. (see Scenario, Event Trace)

Uses - A dependency relationship between two classes.

Virtual Function -  A class member function which is allowed to be redefined by
subclasses with the same interface in order to have different behavior.  It sometimes
implies dynamic binding.


